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Neural Nets and the brain

* Neural nets are composed of networks of computational models of
neurons called perceptrons
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Neural Network

e Learn a non-linear function fw: X = Y:

* X input or feature space: (vector of) continuous and/or
discrete features

* Y output space: (vector of) continuous and/or discrete
variables

* Neural networks use basic units to provide a
non-linear function
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* |940s—1960s:

* development of theories of biological learning

* implementations of the first models
 perceptron (Rosenblatt, 1958) for training of a single neuron.
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Blnary threshold NEUTI OI1S) McCulloch-Pitts neuron|

binary McCulloch-Pitts neuron
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Binary Threshold Neurons

* McCulloch-Pitts (1943): influenced Von Neumann.

* First compute a weighted sum of the inputs.

* send out a spike of activity if the weighted sum exceeds
a threshold.

* McCulloch and Pitts thought that each spike is like the
truth value of a proposition and each neuron combines
truth values to compute the truth value of another

proposition! f: Activation
f function
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The Perceptron

)
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* A threshold unit

— “Fires” if the weighted sum of inputs exceeds a threshold

— Electrical engineers will call this a threshold gate
* A basic unit of Boolean circuits

n Neural Networks

Sharif University
of Technology




Perceptron

* Lean this function
* A step function across a hyperplane
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Single Layer
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Single Layer

«» Single layer network can be used as a linear decision
boundary:

« ¢ (wTx) shows the class of x

* Types of single layer networks:
* Perceptron (Rosenblatt, 1962)
« ADALINE (Widrow and Hoff, 1960)
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Perceptron Learning Algorithm

« Given N training instances
(x®D,y®D), (x®, y@), ., (M, y ™)
« yM = +1or -1

* |nitialize w

* Cycle through the training instance
* If instance misclassified:

* While more classification errors

e Fori=1 ---Ntrain ) .
9O = sign(wTx®) w=w+x

— Ifinstance is positive class

« Ifp@ % y® - . — finstance is negative class
w=w+yOx®

W=WwW-—X
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Training of Single Layer

wt+1 — Wt _ nVEn(Wt)

* Weight update for a training pair (x™, y(™):

* Perceptron: If sign(w? x(™) % y(™) then

£y = —px(My M) E,(w) = —wlxMy®
VEn(W ) Xy if misclassified

* ADALINE: VE,(wt) = —n(y™ — wTxM)x™)

* Widrow-Hoff, LMS, or delta rule Ey(w) = (y® — wa(n))z
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Perceptron vs. Delta Rule

* Perceptron learning rule:

* guaranteed to succeed if training examples are linearly
separable

e Delta rule:

* guaranteed to converge to the hypothesis with the
minimum squared error

* succeed if sufficiently small learning rate

* Even when training data contain noise or are not separable by a
hyperplane

* can also be used for regression problems
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How to learn the weights: multi class
example

The input
Image

b1 Wqqg = Wig X1
W = ‘. cee . X = xZ

bk Wkl see Wkd

This slide has been adopted from Hinton’s lectures, “NN for Machine Learning” course, 2015.

Neural Networks
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)

@ A

®® @ ® ® ®

This slide has been adopted from Hinton’s lectures, “NN for Machine Learning” course, 2015.
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)

(12 ﬁD ® ® @ @ @

This slide has been adopted from Hinton’s lectures, “NN for Machine Learning” course, 2015.
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)

[

This slide has been adopted from Hinton’s lectures, “NN for Machine Learning” course, 2015.
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)

i

This slide has been adopted from Hinton’s lectures, “NN for Machine Learning” course, 2015.
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)
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How to learn the weights: multi class

example

* If correct: no change

* If wrong:
— lower score of the wrong answer (by removing the input from the weight
vector of the wrong answer)
— raise score of the target (by adding the input to the weight vector of the
target class)
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Limitation of single layer network

*Single layer networks is equivalent to template
matching

* Weights for each class as a template for that class.

* The ways in which a digit can be written are much
too complicated to be captured by simple template

* Thus, networks without hidden units are very
limited in the mappings that they can learn

Sharif University
of Technology

Neural Networks



The history of Perceptron

* They were popularized by Frank Rosenblatt in the early
1960’s.
* They appeared to have a very powerful learning algorithm.
* Lots of grand claims were made for what they could learn to do.

* In 1969, Minsky and Papert published a book called
“Perceptrons” that analyzed what they could do and showed
their limitations.

* Many people thought these limitations applied to all neural network
models.

Sharif University
of Technology

Neural Networks




What binary threshold neurons cannot do

* A binary threshold output unit cannot even tell if two single
bit features are the same!

* A geometric view of what binary threshold neurons cannot
do

* The positive and negative cases cannot be separated by a
plane

- +
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Networks with hidden units

* Networks without hidden units are very limited in
the input-output mappings they can learn to model.
* More layers of linear units do not help. Its still linear.
* Fixed output non-linearities are not enough.

* We need multiple layers of adaptive, non-linear
hidden units. But how can we train such nets?
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The multi-layer perceptron

T Deep neural network

hidden layer 1 hidden layer 2 hidden layer 3
input layer

e A network of perceptrons

— Generally “layered”

Sharif University
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The multi-layer perceptron

Deep neural networ!

* Inputs are real or Boolean stimuli
* Outputs are real or Boolean values
— Can have multiple outputs for a single input

* What can this network compute?
— What kinds of input/output relationships can it model?
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Feed-forward neural networks

Weights on links
can be adapted
using training data
and a learning
algorithm

Input

I-@en

Non-processing units Layers
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Feed-forward Neural Networks

* We need multiple layers of adaptive, non-linear hidden units.
* Also called Multi-Layer Perceptron (MLP)

* Each unit takes some inputs and produces one output.
* Output of one unit can be the input of a next layer(s) unit.

é Weights on links
can be adapted

using training data
and a learning
algorithm

Input \

) ) Sharif University
Non-processing units Neural Networks
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Multi-layer Neural Network

&: activation function

Output
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Multi-layer Neural Network

Examples:

¢(z) = max(0,z)
1
¢(2) = 1+e72
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Linear Model

q 1 1
Wio Wi1 .. Wygq X1

1A/

S
<
|
=
|
=

N

'vdu - .
Wiko Wg1 = Wgkg :
. W11 | x
d_
W1  Wpy
Input Output: Wx
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Multi-layer Neural Network

1 1 1
witl = [W1[0] W1[1] W1[2]]

[1 1 (1]
Wzo] WZ[ 1] Wso

Examples:

¢(z) = max(0,z)

1
¢(2) = 1+e72

Matrix form:
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Multi-layer Neural Network

Wio Wi1 Wi

[ —
W [[11 TR

Woo Wa1 Wy

[ 1l [1]
Examples:

¢(z) = max(0,z)

1
$(z) = 1tez

Matrix form:
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MLP With Single Hidden Layer

*e Two-layer MLP (Number of layers of adaptive weights is counted)

M M d
ox(x) =y <Z w,E?z,-) = or(x) = 1/)( WE-](/J (Z wj[illxi)>
/= =0

0
N\

* Thus, we don’t need expert knowledge or time consuming tuning of hand-crafted features

* The form of the nonlinearity (basis functions f;) is adapted from the training data

Neural Networks
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Expressiveness Of Neural Networks

* All Boolean functions can be represented by a network with
a single hidden layer

* But it might require exponential (in number of inputs)
hidden units

 Continuous functions:

* Any continuous function on a compact domain can be

approximated to an arbitrary accuracy, by network with one hidden
layer [Cybenko 1989]

* Any function can be approximated to an arbitrarily accuracy by a
network with two hidden layers [Cybenko |988]
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MLP Universal Approximator

* A feed-forward network with a single hidden layer and
linear outputs can approximate any continuous function on
a compact domain to an arbitrary accuracy

 under mild assumptions on the activation function

* e.g., sigmoid activation functions (Cybenko, 1989)
* when sufficiently large (but finite) number of hidden units is used

M d
F.(x) = Z w,g‘.] ¢ <Z wj[il]xi>
]=1 =0

* It is of greater theoretical interest than practical

* the construction of such a network requires the nonlinear
activation functions and weight values which are unknown

Neural Networks
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MLPs approximate functions

* MLP s can compose Boolean functions
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AND & OR networks

—» OR(21, 12)

AND(x1, T2)
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The perceptron is not enough

XDY

* Cannot compute an XOR
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XOR example

f = XOR(xy, ;) = OR(AND (xy, %), AND (%1, x2) )

Input variables that are True are considered as | and False ones
as -1

Neural Networks
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General Boolean functions

* Every Boolean function can be represented by a
network with a single hidden layer

1. Consider the truth table of the Boolean function

2. Write Boolean function as OR of ANDs, with one AND
for each positive entry in the truth table.

3. Construct a 2-layer network that is composed of OR of
AND:s (first layer contains ANDs and second layer
contains OR)

* [t might need an exponential number of hidden
units

Neural Networks
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |
x X x X, x M
0 0O 1 1 O 1
0 1 0 1 1 1 — = — — — — —_ —
o 11 00 1 Y=XXoXK3Ky X5 tX 1 X X3XK X5 X1 X K3 Xy X5t
N R X1 X2 X3 X, X5 + X1 XXX, X5 + X1 X5 X3 X, X5
1 0O 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |
x X x X, x M
0 0O 1 1 O 1
0 1 0 1 1 1 — p— — — — —_ —
o 11 00 1 YFXXKK Xs FX1 Xy X3Xy X5 TX1XX3X4 X5
N R X1 X2X3X, X5 + X1 XXX, X5 + X1 X5 X3 X, X5
1 0O 1 1 1 1
1 1 0 0 1 1

i\.

X1 X2 X3 -PX X5

* Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |

x X x X, x M

0 0O 1 1 O 1

0 1 0 1 1 1 — = — — p— — —_ —

o 11 00 1 Y=X XXXy X5 4K Ky X3 Xy Xg tX1XX3X4 X5t
N R X1 X2 X3 X, X5 + X1 X, XX, X5 + X1 Xo X3 X, X5
1 0O 1 1 1 1

1 1 0 0 1 1

N

X1 X2 X3 X Xg

* Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |

x X x X, x M

0 0O 1 1 O 1

0 1 0 1 1 1 — = — — — = = =

o 11 00 1 Y=XXoXK3Xy X5 +X1 Xy X3 Xy X5 X1 X X3 X X5
N R X1 X2 X3 X, X5 + X1 XXX, X5 + X1 X5 X3 X, X5
1 0O 1 1 1 1

1 1 0 0 1 1

* Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |
x X, X x X K
0 0O 1 1 O 1
0 1 0 1 1 1 - - —_ — — — —_ —
o 11 00 1 Y=XXpX3XXs +X1XpX3Xy X5 tX1XX3X4 X5t
e X X X3 XX |+ X1 X, X3 X X5 + X1 X X3 X, X5
1 0 1 1 1 1
1 1 0 0 1 1

* Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is |

X, X, X, X, X, |

0 0 1 1 0 1

0 1 0 1 1 1 — — — — — —

o 1 1 00 1 y = X1X2X3X4X5 +X1X2X3X4X5 +X1X2X3X4X5+
S X1 X, X3 X, X5 1 X X X3 X, X5 - X1 X X5 X, X5
1 0 1 1 1 1

1 1 0 0 1 1

* Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is 1
X, X, X X, X [
0 0O 1 1 0 1
0 1 0 1 1 1 —_ = — — — — —_ —
o 11 00 1 Y=X1XX3Xu X5 X1 K X3XKy X5 +X1 X X3 Xy Xt
SR EN X1 X2 X3 X, X5 + X1 XXX, X5 H X X X3 X, X
1 0O 1 1 1 1
1 1 0 0 1 1

» Expressed in disjunctive normal form
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How many layers for a Boolean MLP?

Truth table shows all input combinations

Truth Table for which output is 1
X, X, X, X, X, |

g (1) (1) i (1) i y = X1 X,X3X0 X5 +X1 Xo X3X, X5 XX X3 X, X5t
0 1 1 00 1 X1 X5 X3X, X5 + X1 X5 X3 X4 X5 + X1 X5 X3 X, X5
1 0O 0 0 1 1

1 0 1 1 1 1

1 1 0 0 1 1

» Expressed in disjunctive normal form
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How Many Layers For A Boolean MLP?

..... X, X, X X, Xe + X1 XXX X + X X, XX, X
0O O 1 1 0

—_ = = o o
= =] =] = =

—_—0 OO =

0
1
0
1
0

S = O O =
—_— = = OO

 Any truth table can be expressed in this manner!

* A one-hidden-layer MLP is a Universal Boolean Function

* But what is the largest number of perceptrons required in the single
hidden layer for an N-input-variable function?
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Mlps Approximate Functions

 MLPs as universal classifiers
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The MLP As A Classifier

784 dimensions
(MNIST)

Not 2

784 dimensions

* MLP as a function over real inputs

* MLP as a function that finds a complex “decision boundary” over a
space of reals

Neural Networks

Sharif University
of Technology




Boolean Functions With A Real Perceptron

* Boolean perceptrons are also linear classifiers

— Purple regions are |

Neural Networks
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Composing complicated “decision”

boundaries

X Can now be composed into “networks” to
compute arbitrary classification “boundaries”

N\ /7

1

* Build a network of units with a single output that fires if the input is
in the coloured area
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Booleans Over The Reals

* The network must fire if the input is in the coloured area
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Booleans Over The Reals

* The network must fire if the input is in the coloured area
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Booleans Over The Reals

\

* The network must fire if the input is in the coloured area
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Booleans Over The Reals

* The network must fire if the input is in the coloured area
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Booleans Over The Reals

* The network must fire if the input is in the coloured area
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Booleans over the reals

* The network must fire if the input is in the coloured area
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More complex decision boundaries

X

1
* Network to fire if the input is in the yellow area

— “OR” two polygons
— A third layer is required

Neural Networks
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MLP with unit step activation function

Decision region found by an output unit.

Structure

Single Layer
(no hidden layer)

Two Layer
(one hidden layer)

Three Layer
(two hidden layers)

Type of Decision
Regions

Half space

Polyhedral (open or
closed) region

Arbitrary regions

Interpretation

Region found by a
hyper-plane

Intersection of half
spaces

Union of
polyhedrals

Neural Networks

Example of region

MLP With Different Number Of Layers
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Exercise: Compose This With One Hidden

Layer

X
1
* How would you compose the decision boundary to the left with
only one hidden layer?
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Mlps Approximate Functions

* MLPs as universal approximators (of real-valued functions)
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MLP As A Continuous-valued Regression

* A simple 3-unit MLP with a “summing” output unit can generate a
“square pulse” over an input
— Outputis | only if the input lies betweenT andT,

— T,andT, can be arbitrarily specified

Neural Networks
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MLP As A Continuous-valued Regression

I \R hg
LA,
\

* A simple 3-unit MLP can generate a “square pulse” over an input

* An MLP with many units can model an arbitrary function over an input

— To arbitrary precision

* Simply make the individual pulses narrower

* A one-layer MLP can model an arbitrary function of a single input

n Neural Networks
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Summary

* MLPs are universal Boolean function

* MLPs are universal classifiers
* MLPs are universal function approximators

* An MLP with two (or even one) hidden layers can

approximate anything to arbitrary precision
* But could be exponentially or even infinitely wide in its inputs
size

Sharif University
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How to adjust weights for multi layer

networks?

* How can we train such multi-layer networks?
* We need to adapt all the weights, not just the last layer.
* adapting the weights entering hidden units is equivalent

to learning features.

 seems difficult to learn them since the target output of hidden
units is not specified (only we access the target output of the
whole network).

Sharif University
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What we learn : The parameter of the
network

* Given: the architecture of the network

* The parameters of the network:The weights and biases
— The weights associated with the blue arrows in the picture

* Learning the network: Determining the values of these parameters such that
the network computes the desired function

Neural Networks
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* |980s-1990s: back-propagation algorithm to train a neural
network with more than one hidden layer

* too computationally costly to allow much experimentation with the

hardware available at the time.
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Training multi-layer networks

* Back-propagation
* Training algorithm that is used to adjust weights in

multi-layer networks

* The backpropagation algorithm is based on gradient descent
* The direction of the most rapid decrease in the cost function

Sharif University
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Find the weights by optimizing the cost
* Start from random weights and then adjust them iteratively to get lower cost.

* Update the weights according to the gradient of the cost function

What’s the “cost”
of this difference?

0 00
O1 ’
02
9 .
Y :

Utter trash

~~ . N\ r

Source:
http://3b1b.co
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http://3b1b.co/

Choosing cost function: Examples

0 Regression problem
 SSE
0 Classification problem

* Cross-entropy
* SVM

Sharif University
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How does the network learn?

* Which changes to the weights do improve the most?

* The magnitude of each element shows how sensitive the cost is to that weight or
bias.

Change by some <nmll

multiple of —V'(

/\\

-VC(C(...)
v

All weights

and biases

Source:

p: . e
http://3b1b.co Sharif University
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Sigmoid

» A “squashing” function instead of a threshold
— The sigmoid “activation” replaces the threshold
* These give a real-valued output that is a smooth and bounded function of their input.

» They have nice derivatives.

Sharif University
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Training Neural Nets through Gradient

Descent

Total training error:

N
E=) loss(o™, y™)
n=1

*s Gradient descent algorithm
k Assuming the bias is also
K

* Initialize all weights and biases { f represented as a weight
* Using the extended notation : the bias is also weight

e Do:

* For every layer k for all i, j update:

. WKl = K _ o dE
ji i T g

* Until E has converged

Neural Networks
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The derivative

Total training error:
E=) loss(o®,y™)
n=1

Total derivative:

Sharif University
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Training by gradient descent

« |nitialize all weights {w { [k]}
* Do: .
 Foralli,j,k, initialize — — =0

aw ;;
* Foralln=1:N
* For every layer k for aII L, {n)

d loss(o ),
* Compute 7l
dw
, 4dE , _d loss(o(’l"j y™)
awl TS T g

* For every Ia;'er k for all iflj:

] _ [ _ n _dE
W]l ijl N gw [k]
J

Sharif University
of Technology
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Training multi-layer networks

* Back-propagation

* Use chain rule to efficiently compute gradients

Sharif University
of Technology
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Simple chain rule

9z __ 0z 0y
or  Jdy Oz

Neural Networks




Calculus Retfresher: Basic rules of calculus

y = f(x)

with derivative
dy
dx
the following must hold for sufficiently small Ax |:>Ay ~

dy
—A
dx x

For any differentiable function
y = f(x1, X2, w0 X)
with partial derivatives
oy 0Oy oy
ox1 " ox2” " oxm
the following must hold for sufficiently small Axy,Ax;, ..., Axy

dy dy dy

Ay =~ axlel+-a 2AX2 e

M

Neural Networks

dy Ay

dx Ax
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Calculus Refresher: Chain rule

y=fgx))

dy  0f dg(x)
dx dg(x) dx

d
Ay=%Ax

2= 900 = az = 200

1= ay Y80,

Ax
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Multiple paths chain rule
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Distributed Chain Rule: Influence
Diagram

 x affects y through each g4, ..., gy

Sharif University
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Calculus Retfresher: Distributed Chain rule

v = f(g1(x), 91 (%), ..., gu (X))

dy __0f dg:0) _Of dg:() . 0f dgu®
dx 0g,(x) dx dg,(x) dx dgy(x) dx

dy
Ay = —=A
Y dx *
A o _, (x) + Ag,(x) + - + Aga ()
— X X X
YT 0000 I T o007 Ogux) M
__9f dg (¥ of dg (%) af dg (%)
Ay_ag (x) dx Ax+ag (x) dx Ax + +6g (x) dx Ax

_ (0 dg () , O dg® , , 9 dg (% v
Ay_ (ag (x) dx +ag (x) dx + +ag (x) dx )AX

Sharif University
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Distributed Chain Rule: Influence Diagram

dx

g™ (x)

dx

« Small perturbations in xcause small
perturbations in each of g; ... gp, ¥

which individually additively

yerturbs
88 Neural Networks
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Returning to our problem

* How to compute (‘0) 220! b

[A]
X\Wb

Sharif University
of Technology
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Backpropagation: Notation

e al®l « Input
* output « alll

a[l_]-]

@i
©-
-

layer (¢

_l>

O
o

Neural Networks

alll

layer (
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Backpropagation: Last layer gradient

dloss o _ ( )
mr L
loss = —Z(oj y] _] Zj[L] i [L 1]

'j ';4"1 v Y
- OLoSS i=0
0] a] 7“ -

dalt

For squared error loss:

dloss

[L]
awﬁ

Sharif University
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Backpropagation: Last layer gradient

For squared error loss:

dloss
1 2
0; = a]["] J
dloss 0dloss aa][L]
A |L [L] [L]
ow;, aaj awji
dalll
[L]
Owji

Neural Networks

a=f Ang[”)

(L] _ (L] [L-1]
4= ) Wi
i=0
Output j
a[L

ol
di

dloss

[L]
awji
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Activations and their derivatives

f@)= — f'@) = f()(1 = f(2)

/ f(2=tanh(z) f f@=1-f@

) 1
/4
rys

' 1,z=20
= V f(z) = {2 52 (()) f'@ = {Oi <0
f(z) =log(1 + exp(2)) r@= 1+ exp(—2)

» Some popular activation functions and their derivatives

Neural Networks
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Previous layers gradients

al’

a}l] =f (zj[l]) o 0 loss

M 7 2]

w_N" 0 [-1] 0z
[1] g i d loss

®loss 0 loss 0z; i=0

= : ow!!

0z L] aW[lJ Jji

J Ji

055 _ d loss gl

gz "
]

d loss
-7

oz
]

Sharif University
of Technology

Neural Networks




Previous layers gradients

[l] —f( [l])

[]_

®loss GIOSS'GZF] d loss -1

— = = a;
ALl [1] [1] [l
0w, azj amgi a;i

_171 all
alossl_ [ 1 aloss []
o1 5, [l 1] 1 9z [l [l 1]
l d [l]

0 loss
1 [1-1] E [1]
=f(4 ) X W
[1] Ji
j=1 aZi

Neural Networks
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Backpropagation:

"
o

loss

d loss

[1]
azj

5

Neural Networks
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Backpropagation:

al!
P :
dloss |0 loss| 0z al = f(zlll)
awll | gz Xaw[l] 2 =) willgl A
Wi j ji Z
— | sl ,[1=1]
= 6j Xa;
aEl_ll
01
y s = O[f]s is the sensitivity of the loss to z][ | @
9z;
» Sensitivity vectors can be obtained by running a backward process in the
network architecture (hence the name backpropagation.)
We will compute " from &";
att
- -1 l l
sl = ( [ ])25[1 [
j=1
Sharif University
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Backward process on sensitivity vectors

» For the final layer [ = L:

dl
5[L] _ 0SS
J 82.[L]
]

[1-1] |

» Compute § from &' by running a backward process in the

network architecture:

-1 / -1 l l
sl = f (Zi[ ])25][] ij[i]
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Backpropagation Algorithm

»e Initialize all weights to small random numbers.
» While not satisfied

» For each training example do:

Feed forward the training example to the network and compute the
outputs of all units in forward step (z and a) and the loss

For each unit find its ¢ in the backward step

. l l l d loss d loss

Update each network weight wi as wlth !t — N — Where —
Ji ji ji awl awll

ji ji

_ o[l [1-1]
—5]. X a;
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Multi-layer network: Matrix notation

o
@utput = all! \@ z

L] S

:f W[L]a[L—l]) [L]®\\?[L 1]
= f(Wtlfwlt-1glL-2]) [ W | \@ .
=f (W (L1 (W[L .. f (W[z] F(w x)))) \@\am
) @)
oy
Cwi [ x ]
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Multi-layer network: Matrix notation

alll = output

@utput = all! \@ z

— f Z[L] 1]
_f W[L)]a[L—u) ‘@\
(L]
= f(W[L] f(W[L—l]a[L—z]) | wi | \@ Zm
=f (W[L]f (W[L—” wf (W[Z]f(W[ﬂx)))) \@ ol
AN
)
0loss _dloss é
P I 1] B o
0 loss r 0 loss
— fl( [y lt+1]" "
= f(z'"YW
aZ[z] f ") aZ[l+1]
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Vanishing/exploding gradients

o [L]

alll = output ™\_@
z AN
\@)\ a

az"" 0z z?
e (-1 T o er (11 n+1T 9En .
=f (z )xW Xf (z )xW xaz[m] @ a

. CwE ] <:> L1
= (") s x f7 (=) w1 s g7 (1) W 21 (z°1) ®

g OEn -
xWH xf (z[”)xa il x
a

0E 0E 1T
= orxe
ow 0z
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of Technology

102

Neural Networks




Vanishing/exploding gradients

S =
_ f ( ) i’ X f’ ( [z]) i+’ X f’ (Z[z+1]) w2’ o
< £ (A7) x w1

For deep networks:
Large weights can cause exploding gradients

Small weights can cause vanishing gradients

whl=..=wll=wl, f(z2) =z=>
[1] L-1¢[L] _ L—1 g[L]
= (wl)*7*6"" = (w)“~ 48

Sharif University
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Mini-batch gradient descent

*Large datasets

* Divide dataset into smaller batches containing one
subset of the main training set

* Weights are updated after seeing training data in each of
these batches

Sharif University
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Gradient descent methods

Stochastic gradient Stochastic mini-batch gradient Batch gradient

Batch size=1 e.g., Batch size= 32, 64, 128, 256 Batch size=n

(the size of training set)

n: whole no of training data
bs: the size of batches

m= [1]: the number of batches
bs

Sharif University
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Mini-batch gradient descent

Fer epoch=1,...,k

For t=1,....m
Forward propagation on X{t} A0 — x(8)
1 epoch: 0 _ 1 () oit) =
Single pass ] - ;ZneBatcht L (Yn ) Yn ) + AR (W) For [l = 1, ,L
overall Backpropagation on J{t} to compute gradients dW z = wilAl=]
training Al = f[l](Z[l])
samples Forli=1,..,L Pty — 4lt]
wll = wltl — gdw ] " "
Vectorized computaion
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Gradient descent methods

Stochastic gradient descent

Stochastic mini-batch gradient

Batch gradient descent

Batch size=1

* Does not use vectorized
form and thus not
computationally efficient

107

e.g., Batch size= 32, 64, 128,256

* Vectorization
* Fastest learning
(for proper batch size)

Neural Networks

Batch size=n
(the size of training set)

* Need to process whole
training set for weight
update
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Mini-batch gradient descent: loss-#epoch
curve

00
0
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Choosing mini-batch size

* For small training sets (e.g., n<2000) use full-batch gradient
descent

* Typical mini-batch sizes for larger training sets:
* 64, 128,256,512

* Make sure one batch of training data and the corresponding
forward, backward required to be cached can fit in GPU
memory

Sharif University
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Designing a network

* Input
* Output

* Output activation
* Loss function

* Hidden layers
* Activation function of hidden layers

* Number of hidden layers and number of hidden units in
each layer
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Binary classifier example:

Logistic regression

hidden layers

o0 =0(2)

input layer

*e For binary classifier with scalar output 0 € (0,1), y is 0/1, the cross entropy
between the probability distribution [0, 1 — 0] and the ideal output probability

[v,1—y]is popular Loss(y,0) = —ylogo — (1 — y)log(1 — 0)

* Derivative

1.
dL(y,0) | ~7U¥r=1
do
i =0
T—o Y
Sharif University
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Multi-class networks

Input
Hidden Layers
Layer Output
= — Layer
ST A4\
= T_-
S oot -
5 T —
,';' § g S T
A % AR J —

* For input of any class, we will have a K-dimensional target vector with K-| zeros and a
single | at the position of the class (I-hot)

* The neural network’s output will be a probability vector
— K probability values that sum to I.
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Softmax activation function

% Softmax vector activation is often used at the output of multi-class classifier
nets
Z; = Z\rvj(il)a]gn_l)
j

(@)
‘e Zj exP(Zj)

* This can be viewed as the probability 0; = P(class = i|x)

Sharif University

113 Neural Networks of Technology




